Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Phytomedicine ; 116: 154858, 2023 Jul 25.
Article in English | MEDLINE | ID: covidwho-2310275

ABSTRACT

BACKGROUND: Myricetin (3,5,7-trihydroxy-2-(3,4,5-tri hydroxyphenyl)-4-benzopyrone) is a common flavonol extracted from many natural plants and Chinese herb medicines and has been demonstrated to have multiple pharmacological activities, such as anti-microbial, anti-thrombotic, neuroprotective, and anti-inflammatory effects. Previously, myricetin was reported to target Mpro and 3CL-Pro-enzymatic activity to SARS-CoV-2. However, the protective value of myricetin on SARS-Cov-2 infection through viral-entry facilitators has not yet been comprehensively understood. PURPOSE: The aim of the current study was to evaluate the pharmacological efficacy and the mechanisms of action of myricetin against SARS-CoV-2 infection both in vitro and in vivo. METHODS: The inhibitory effects of myricetin on SARS-CoV-2 infection and replication were assessed on Vero E6 cells. Molecular docking analysis and bilayer interferometry (BLI) assays, immunocytochemistry (ICC), and pseudoviruses assays were performed to evaluate the roles of myricetin in the intermolecular interaction between the receptor binding domain (RBD) of the SARS-CoV-2 spike (S) protein and angiotensin-converting enzyme 2 (ACE2). The anti-inflammatory potency and mechanisms of myricetin were examined in THP1 macrophages in vitro, as well as in carrageenan-induced paw edema, delayed-type hypersensitivity (DTH) induced auricle edema, and LPS-induced acute lung injury (ALI) animal models. RESULTS: The results showed that myricetin was able to inhibit binding between the RBD of the SARS-CoV-2 S protein and ACE2 through molecular docking analysis and BLI assay, demonstrating its potential as a viral-entry facilitator blocker. Myricetin could also significantly inhibit SASR-CoV-2 infection and replication in Vero E6 cells (EC50 55.18 µM), which was further validated with pseudoviruses containing the RBD (wild-type, N501Y, N439K, Y453F) and an S1 glycoprotein mutant (S-D614G). Moreover, myricetin exhibited a marked suppressive action on the receptor-interacting serine/threonine protein kinase 1 (RIPK1)-driven inflammation and NF-kappa B signaling in THP1 macrophages. In animal model studies, myricetin notably ameliorated carrageenan-induced paw edema in rats, DTH induced auricle edema in mice, and LPS-induced ALI in mice. CONCLUSION: Our findings showed that myricetin inhibited HCoV-229E and SARS-CoV-2 replication in vitro, blocked SARS-CoV-2 virus entry facilitators and relieved inflammation through the RIPK1/NF-κB pathway, suggesting that this flavonol has the potential to be developed as a therapeutic agent against COVID-19.


Subject(s)
COVID-19 , Mice , Rats , Animals , Humans , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/chemistry , Molecular Docking Simulation , Carrageenan , Lipopolysaccharides/pharmacology , Protein Binding , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Flavonols/pharmacology
2.
Immunology ; 2022 Sep 03.
Article in English | MEDLINE | ID: covidwho-2246810

ABSTRACT

Given increased acceptance of the CoronaVac, there is an unmet need to assess the safety and immunogenic changes of CoronaVac in patients with rheumatic diseases (RD). Here we comprehensively analysed humoral and cellular responses in patient with RD after a three-dose immunization regimen of CoronaVac. RD patients with stable condition and/or low disease activity (n = 40) or healthy controls (n = 40) were assigned in a 1:1 ratio to receive CoronaVac (Sinovac). The prevalence of anti-receptor binding domain (RBD) antibodies and neutralizing antibodies was similar between healthy control (HC) and RD patients after the second and the third vaccination. However, the titers of anti-RBD IgG and neutralizing antibodies were significantly lower in RD patients compared to HCs (p < 0.05), which was associated with an impaired T follicular helper (Tfh) cell response. Among RD patients, those who generated an antibody response displayed a significantly higher Tfh cells compared to those who failed after the first and the second vaccination (p < 0.05). Interestingly, subjects with a negative serological response displayed a similar Tfh memory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-derived peptides as their anti-RBD IgG positive counterpart, and all (4/4) of the non-responders in HCs, and 62.5% (5/8) of the non-responders in patients with RD displayed a positive serological response following the third dose. No serious adverse events were observed. In conclusion, our findings support SARS-CoV-2 vaccination in patients with RD with stable and/or low disease activity. The impaired ability in generating vaccine-specific antibodies in patients with RD was associated with a reduction in Tfh cells induction. The window of vaccination times still needs to be explored in future studies. Clinical trial registration: This trial was registered with ChiCTR2100049138.

3.
Expert Opin Ther Targets ; 26(5): 461-477, 2022 05.
Article in English | MEDLINE | ID: covidwho-1956519

ABSTRACT

INTRODUCTION: Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED: Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION: Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.


Subject(s)
Adaptive Immunity , Autoimmune Diseases , Autoimmune Diseases/drug therapy , Humans , Immunotherapy , Receptors, Scavenger
4.
Int J Rheum Dis ; 24(6): 733-745, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1214741

ABSTRACT

AIM: To update previous guidance of the Asia Pacific League of Associations for Rheumatology (APLAR) on the management of patients with rheumatic and musculoskeletal diseases (RMD) during the coronavirus disease 2019 (COVID-19) pandemic. METHODS: Research questions were formulated focusing on diagnosis and treatment of adult patients with RMD within the context of the pandemic, including the management of RMD in patients who developed COVID-19. MEDLINE was searched for eligible studies to address the questions, and the APLAR COVID-19 task force convened 2 meetings through video conferencing to discuss its findings and integrate best available evidence with expert opinion. Consensus statements were finalized using the modified Delphi process. RESULTS: Agreement was obtained around key aspects of screening for or diagnosis of COVID-19; management of patients with RMD without confirmed COVID-19; and management of patients with RMD with confirmed COVID-19. The task force achieved consensus on 25 statements covering the potential risk of acquiring COVID-19 in RMD patients, advice on RMD medication adjustment and continuation, the roles of telemedicine and vaccination, and the impact of the pandemic on quality of life and on treatment adherence. CONCLUSIONS: Available evidence primarily from descriptive research supported new recommendations for aspects of RMD care not covered in the previous document, particularly with regard to risk factors for complicated COVID-19 in RMD patients, modifications to RMD treatment regimens in the context of the pandemic, and COVID-19 vaccination in patients with RMD.


Subject(s)
Antirheumatic Agents/therapeutic use , COVID-19/epidemiology , Consensus , Immunosuppressive Agents/therapeutic use , Pandemics , Rheumatic Diseases/drug therapy , Comorbidity , Humans , Rheumatic Diseases/epidemiology , Rheumatology , SARS-CoV-2
5.
Nat Rev Rheumatol ; 17(1): 11-15, 2021 01.
Article in English | MEDLINE | ID: covidwho-899936

ABSTRACT

The emergence of COVID-19 in early 2020 led to unprecedented changes to rheumatology clinical practice worldwide, including the closure of research laboratories, the restructuring of hospitals and the rapid transition to virtual care. As governments sought to slow and contain the spread of the disease, rheumatologists were presented with the difficult task of managing risks, to their patients as well as to themselves, while learning and implementing new systems for remote health care. Consequently, the COVID-19 pandemic led to a transformation in health infrastructures and telemedicine that could become powerful tools for rheumatologists, despite having some limitations. In this Viewpoint, five experts from different regions discuss their experiences of the pandemic, including the most challenging aspects of this unexpected transition, the advantages and limitations of virtual visits, and potential opportunities going forward.


Subject(s)
COVID-19/epidemiology , Delivery of Health Care/methods , Pandemics , Rheumatic Diseases/epidemiology , Rheumatology , Telemedicine/methods , Comorbidity , Global Health , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL